
Deep Learning Techniques in the Textual 
Data Mining of Chinese Medicine Literature

Chow Hazel Cosima
BChinMed Year 2
Email: hazelcm@connect.hku.hk

1. Pan, D., Guo, Y., Fan, Y., & Wan, H. (2024). Development and Application of Traditional Chinese Medicine Using AI Machine Learning and Deep Learning Strategies. The American Journal of Chinese Medicine (1979), 52(3), 605–623. https://doi.org/10.1142/S0192415X24500265
2. Li, D., Hu, J., Zhang, L., Li, L., Yin, Q., Shi, J., Guo, H., Zhang, Y., & Zhuang, P. (2022). Deep learning and machine intelligence: New computational modeling techniques for discovery of the combination rules and pharmacodynamic characteristics of Traditional Chinese Medicine. European 

Journal of Pharmacology, 933, 175260–175260. https://doi.org/10.1016/j.ejphar.2022.175260
3. Li, R., Ren, G., Yan, J., Zou, B., & Liu, Q. (2024). Intelligent question answering system for traditional Chinese medicine based on BSG deep learning model: taking prescription and Chinese materia medica as examples. Digital Chinese Medicine (Online), 7(1), 47–55. 

https://doi.org/10.1016/j.dcmed.2024.04.006

References

Objectives
This study evaluates an AI model (DeepSeek-R1 
7B) trained on TCM literature to generate 
responses on cancer pathogenesis and 
treatment. We assessed the model’s accuracy, 
clarity, and clinical applicability, focusing on 
lung and breast cancer.

Significance
 Addresses gaps in scientific validation of 

TCM mechanisms (e.g., acupuncture, herbal 
medicine). 

 Provides a knowledge base for 
clinicians/researchers via AI-driven insights.

Key Focus Areas: Lung cancer & breast 
cancer pathogenesis, integration of TCM theory 
with modern oncology.

Introduction

Results

1. Data Collection & Curation
 Tools: Python crawler, EndNote
 Process: 
 Scraped 8,000+ papers from 

PubMed/CNKI → filtered to 1000+ 
high-relevance studies.

 Keywords: "TCM," "cancer," 
"mechanism," "acupuncture," 
"lung/breast cancer.“

 Challenge: Irrelevant results → resolved 
via elaboration in prompt engineering

2.  Model Deployment
 Tools: DeepSeek-R1-7B (local), Cherry 

Studio (interface)
 Process:
 Local deployment in terminal
 Switched from failed WebUI and 

Chatbox interface to Cherry Studio for 
stable API integration.

3.  Model Training
 Approach: prompt engineering
 Designed prompts with constraints (e.g., 

"Cite sources from uploaded papers").
 Blind testing using 3 questions on ‘cancer’, 

‘lung cancer’ and ‘breast cancer’ 
respectively.

 User Feedback: Tested responses with TCM 
students and the public; improvements 
include:
 Simplified language (e.g., analogies like 

"Acupuncture acts as a traffic controller 
for energy flow").

 Structured layouts (bullets, headers).
 Graphical representations (e.g.

synergistic outcomes of TCM and WM 
treatments)

Methods and Materials

This project demonstrates the potential of AI in 
synthesizing TCM and modern oncology 
knowledge. The trained DeepSeek-R1 model 
showed measurable improvements in scientific 
accuracy, depth of mechanistic detail, and 
relevance compared to its untrained 
counterpart, validating the effectiveness of 
domain-specific fine-tuning. Responses 
enriched with TCM-WM integration, such as 
linking Qi deficiency to immunosuppressive 
tumor microenvironments or explaining herb-
chemotherapy interactions, were rated highly 
by both TCM students and the public. This 
suggests AI can serve as a bridging tool for 
interdisciplinary dialogue in integrative 
oncology. 

Discussion

The AI model shows promise in bridging TCM 
and modern oncology but requires refinement 
in clarity and terminology. 

Next steps:
1. Expand datasets with non-English literature.
2. Validate outputs in clinical settings.
3. Enhance interdisciplinary training for 
seamless TCM-WM integration.

Conclusions

 Accuracy & Relevance: Trained responses 
scored higher (avg. 4.0–5.0) in scientific 
validity and direct relevance.

 Comprehensibility: Individuals without TCM 
background found jargon challenging 
(scores: 3.0–4.0); trained responses were 
clearer but needed simplification.

 Depth of details: Trained responses provided 
deeper explanations (avg. 4.0–5.0) but 
sometimes at the cost of comprehensibility.

 Clinical Utility: Trained outputs were rated 
more actionable (avg. 3.0–5.0), especially for 
TCM-WM integration.

Participant Feedback
• 60% noted consistent differences (e.g., one 

response set was more detailed).
• 62.5% TCM student-respondent rated 

terminology use as “partially correct.”
• Suggested improvements: Simpler language, 

more scientific references, and better TCM-
WM integration.

• Limitations: Occasional over-complexity in 
responses.

Figure 1a & 1b. Python program for paper scraping

Figure 3. Interface for database in 
Cherry Studio

Table 1. Comparison across Trained models (T1 & T2) and Control 
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Chart 1. Comparison of scores of Control vs Trained model.
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Figure 2. Sample output of control (left) and trained model (right)

Figure 4. Running initial local 
deployment (without using interface)
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